
Excitons in superlattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 2099

(http://iopscience.iop.org/0953-8984/2/8/016)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 21:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/8
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 2099-2104. Printed in the UK 

LETTER TO THE EDITOR 

Excitons in superlattices 

N F Johnson 
Division of Applied Sciences, Harvard University, Cambridge, MA 02138, USA and 
Cavendish Laboratory, Cambridge University, Cambridge CB3 OHE, UK 

Received 20 November 1989 

Abstract. A simple, non-variational approach for calculating exciton binding energies in 
superlattices is developed. The approach is sufficiently versatile that it applies in the limits 
of strongly coupled and isolated quantum wells, and in the presence of external fields. 
Excellent agreement is obtained with experimental binding energies in GaAs/GaAlAs using 
only bulk k p parameters as input. 

Many experimental and theoretical studies have been reported of excitons in single 
quantum wells [l]. Increasing attention is now being paid to the properties of excitons 
in superlattices with finite barrier thicknesses [2-51, such that the exciton can spread 
over several superlattice periods. In particular, experimental values of superlattice 
exciton binding energies both with [2] and without [3] external electric fields have 
recently been reported. Theoretical studies of excitons in superlattices have however 
primarily utilised variational ‘particle-in-a-box’ approaches or the computationally 
intensive k-space sampling technique of Chu and Chang [6]. 

In this letter we present a simple and versatile non-variational approach for cal- 
culating superlattice binding energies based on the crystal coordinate representation 
(CCR) using a basis consisting of superlattice Wannier functions. The formalism under- 
lying the present approach exploits the 3D superlattice periodicity, as in the case of the 
one-electron f-sum rule [7], and is applicable to semiconductor superlattices (types I, I1 
and 111) with arbitrary layer widths. The exciton equation in the CCR representation 
yields a ID tight-binding equation involving the growth axis. An approximate solution 
yields excellent agreement with recently measured binding energies in GaAs/GaAlAs 
superlattices as a function of (i) layer widths spanning the range from strongly coupled 
to isolated quantum wells [3] and (ii) electric field strength [2]. Preliminary results from 
this work have been briefly reported [8]. The effects of other (e.g. magnetic) fields will 
be considered in a future publication [9]. 

The eigenstates of the superlattice single-particle Hamiltonian HsL are defined for 
band L at wavevector K by 

H S L  I LK) = EL (K) I LK). (1) 
As in the bulk, the superlattice Wannier function at superlattice lattice vector R = 
( X ,  Y ,  2) is defined as 

where Q is the normalisation volume. The superlattice growth (I) axis is taken to be 
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the Z axis while the in-plane (11) directions are described by X and Y. The superlattice 
period in the I (11) direction is d (a), where d is typically of the order of 100 8, while a = 
6 A. The superlattice Wannier function will have a spatial extent of the order of d (a)  in 
the I ( 1 1 )  direction [9]. 

The many-body Hamiltonian is given by 

where the latter term is the Coulomb interaction. We are only interested in electron- 
hole excitations and expand the exciton wavefunction in a basis of two-particle Wannier 
states 1 LR + R’; L’R‘)  each consisting of a symmetrised product of electron (hole) 
Wannier functions [lo] for band L ( L ’ )  centred at R + R’ (R’).  To simplify notation we 
only consider two superlattice bands although the formalism can be easily generalised. 
The total exciton state IY) at zero exciton wavevector (i.e. the optically active exciton) 
can be written [ 101 as 

where U(R) is the exciton CCR wavefunction. The sum over R’ includes all two-particle 
states with a given electron-hole separation R while the sum over R accounts for all 
possible electron-hole separations. Evaluating the many-body Hamiltonian of (3) in the 
two-particle basis leads to a set of difference equations [lo] 

F((Q/8n3) J dKex’(R-R’) (E&) - E,.(K)))U(R’) - V(R)U(R)  = EU(R).  ( 5 )  

Here E is the excitation energy of the superlattice and V ( R )  is the direct Coulomb term 
[ l l ]  given by 

where re (rh) defines the electron (hole) coordinates and E is the static dielectric constant. 
To evaluate ( 5 )  for the superlattices of interest, we write 

where pll is the parallel reduced mass and E, is the K = 0 gap between bands L and L‘. 
The parabolic approximation has been made in the parallel direction. The expansion 
of the perpendicular dispersion as a cosine series with coefficients W(n) exploits the 
approximate inversion symmetry of superlattice energy bands under K ,  + -KL. The 
equivalent of the effective mass approximation is then made in the parallel direction 
where the exciton radius (typically 100 8, in the bulk semiconductors of interest) is much 
greater than the underlying superlattice unit cell size (a = 6 A). The lattice vector 
coordinates X, Y can therefore be treated as continuous variables. Notice that the 
effective mass approximation cannot be made in the growth direction since d is of the 
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order of the exciton radius. Using (7) and the above approximations, equation ( 5 )  yields 
a set of coupled differential equations 

+ U ( X ,  Y ,  ( j  - n)d ) )  = ( E  - x 2W(n) 
n =  1 

where E = ( E  - E g )  represents the exciton binding energy. The two possible cases of 
(8) are as follows. 

(i) W(n) = 0 in (8) for all n ,  which is characteristic of a thick barrier limit in which 
the electron and hole cannot tunnel between adjacent wells. Equation (8) becomes 

- - + - V ( X ,  Y ,  j d ) ]  U r ( X ,  Y ,  j d )  = E:" U r ( X ,  Y ,  j d )  L;;L$ :;) (9) 

which yields the mth (excited state) exciton solution for a given electron-hole separation 
of j periods. The corresponding binding energies E!" for a given j are analogous to the 
energy levels of a hydrogenic atom. For convenience we can represent the eigenstate of 
(9) for a given j and m in terms of an orthonormal basis { & x , Y , , d }  corresponding to the 
superlattice lattice points; hence 

E ur (x, y ,  j 'd )a  j j '  EX, Y,j 'd  y o , j m  = 
ex 

X. Y.j' 

(ii) W(n)  # 0; here the exciton is characterised by a distribution ofjs. The eigenstate 
of (8) can therefore be represented as 

Yex = c j T : p .  
j .m 

It then follows formally from (8) that [9] 

where 

@$m(n) = W(n) J] d X d Y  ( U r ' ( X ,  Y , j ' d ) ) * U r ( X ,  Y, jd) .  

Equation (11) is identical to a ID tight-binding equation where E:" is the on-site energy 
at site j and w;"(n) is the hopping term. Equation (11) is the main result of the 
formalism for the zero-field binding energy E and is applicable to superlattices of arbitrary 
width. 

We now solve (11) approximately to compare with the experimental results for 
GaAs/GaAlAs [3]. Only the nearest-neighbour hopping WE" (1) will be retained since 
we are mostly interested in superlattices with barrier thicknesses greater than 30 A. In 
order to obtain values of E:'", the potential function V ( X ,  Y ,  j d )  needs to be specified 
(see (6)). Explicit forms for the electron and hole Wannier functions ((reILR) and 
(rh I L'O) respectively) must therefore be used. Since the electron-hole Coulomb inter- 
action is slowly varying on the atomic scale a, the rapidly varying portion of the super- 
lattice Wannier functions in (6) can be integrated out [9], leaving an envelope function 
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modulation of each Wannier function on the scale of d (a)  in the 1 ( 1 1 )  direction. We 
then assume for simplicity that the charge distribution associated with the electron (hole) 
Wannier function is well described by a uniformly charged rod of X-Y cross section 
equal to a X a and length 1, ( I h ) ,  where 1, (Ih) corresponds to the spatial extent of the 
electron (hole) Wannier function in the growth direction. We take I ,  ( Ih)  to be equal to 
the well width plus twice the electron (hole) envelope function decay length in the barrier 
layers. This simplification leads to an analytic expression for V ( X ,  Y ,  jd) .  The resulting 
nearest-neighbour tight-binding equation is then easily solved. Values of the electron 
and hole bandwidths and the superlattice in-plane masses [ 121 are obtained using the 
envelope function approach of [7] which accounts for valence-band mixing. The bulk 
k . p  input parameters for GaAlAs are the same as in [7]. 

Figure 1 compares the experimental [3] and present theoretical binding energies for 
1s excitons formed from the lowest conduction band ci and the topmost valence band 
m i  in the (d/2) GaAs/(d/2) Gao,7Alo,3As superlattice at low temperature. The excellent 
agreement between theory and experiment implies that the simplifying assumptions 
made in the previous paragraph are reasonable. For small d ,  the superlattice exciton 
binding energy is nearly equal to that of the bulk alloy Gao.ssAlo rsAs chosen to have the 
same A1 concentration as the superlattice. The exciton CCR wavefunction U ( X ,  Y ,  jd )  is 
non-zero over many superlattice periods in this regime. An increase in d implies an 
increase in the barrier thickness for holes and electrons. As a result the total electron- 
hole bandwidth given by 4W(1) decreases, and the binding energy increases. For 
d > 140 A, W( 1) is zero; hence the electron and hole are localised in the same layer. The 
superlattice exciton binding energy becomes equal to the value for a single quantum 
well which gradually decreases as d increases [ 131. 

Bulk GoAlAs 

I I I 5 I I I I  
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The presence of a finite electric field F along the growth direction adds 

-eF z ,  
I 

to the total exciton Hamiltonian (3). A term eFjd consequently appears in the CCR 
exciton equation, and corresponds to intra-sub-band transitions induced by the electric 
field. Contributions arising from inter-sub-band transitions are neglected. The effect of 
the electric field on the zero-wavevector exciton energy spectrum is then described in 
the present theory by 

[ ( E : , ~  - eFjd - E + n = l  i 2W(n))C3,,.~3~~( - n = l  5 @$m(n)d,,,,,]cy = 0. (12) 
1.m 

In thezero-field limit, (12) is identical to (11). In the absence of the Coulomb interaction, 
E;" = 0 and (12) leads to the formation of a Stark ladder [ 141, 

Figure 2 compares the experimental [2] and theoretical exciton binding energies for 
the 40 A GaAs/40 A Ga, 65A10 3 5 A ~  superlattice as a function of increasing electric field 
F. The heavy-hole (CI-HHI) and light-hole (CI-LHI) binding energies shown correspond 
to the intra-well exciton, which is characterised by the electron and hole becoming 
localised in the same well at high electric fields. The total bandwidth of the electron and 
heavy hole (4W( 1)) is 15 meV while that of the electron and light hole is 28 meV. At low 
fields the exciton binding energy tends to the zero-field result (cf figure 1). As Fincreases 
the binding energy increases due to the enhanced electron and hole localisation associ- 
ated with the formation of the Stark ladder [ 141. At high fields (eFd %- 4W( 1)) the exciton 
binding energies become those of an isolated quantum well of width 40 A. The reason 
that the theoretical binding energies lie below the experimental values at high fields is 
most likely due to the neglect of inter-sub-band transitions and tunnelling effects. 
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